Computer-Aided Software Engineering

CASE tools are a class of software that automates many of the activities involved in various life cycle phases. For example, when establishing the functional requirements of a proposed application, prototyping tools can be used to develop graphic models of application screens to assist end users to visualize how an application will look after development. Subsequently, system designers can use automated design tools to transform the prototyped functional requirements into detailed design documents. Programmers can then use automated code generators to convert the design documents into code. Automated tools can be used collectively, as mentioned, or individually. For example, prototyping tools could be used to define application requirements that get passed to design technicians who convert the requirements into detailed designs in a traditional manner using flowcharts and narrative documents, without the assistance of automated design software.

Automated tools can also facilitate the coordination of software development activities through the use of data warehouses or repositories. Repositories provide a means to store and access information relating to a project, such as project plans, functional requirements, design documents, program libraries, test banks, etc.

Organizations generally implement automated development tools to increase productivity, decrease costs, enhance project controls, and increase product quality. However, only by managing the various risks associated with automated technologies will organizations ensure they develop systems with appropriate functionality, security, integrity, and reliability.

Common CASE risks and associated controls include:

  • Inadequate Standardization - Linking CASE tools from different vendors (design tool from Company X, programming tool from Company Y) may be difficult if the products do not use standardized code structures and data classifications. File formats can be converted, but usually not economically. Controls include using tools from the same vendor, or using tools based on standard protocols and insisting on demonstrated compatibility. Additionally, if organizations obtain tools for only a portion of the development process, they should consider acquiring them from a vendor that has a full line of products to ensure future compatibility if they add more tools.
  • Unrealistic Expectations - Organizations often implement CASE technologies to reduce development costs. Implementing CASE strategies usually involves high start-up costs. Generally, management must be willing to accept a long-term payback period. Controls include requiring senior managers to define their purpose and strategies for implementing CASE technologies.
  • Quick Implementation - Implementing CASE technologies can involve a significant change from traditional development environments. Typically, organizations should not use CASE tools the first time on critical projects or projects with short deadlines because of the lengthy training process. Additionally, organizations should consider using the tools on smaller, less complex projects and gradually implementing the tools to allow more training time.
  • Weak Repository Controls - Failure to adequately control access to CASE repositories may result in security breaches or damage to the work documents, system designs, or code modules stored in the repository. Controls include protecting the repositories with appropriate access, version, and backup controls.

 

Previous Section
Object-Oriented Programming
Next Section
Rapid Application Development